Congratulations to Lina Li for her paper is accepted for publication in J. Am. Chem. Soc.

Ferroelectric semiconductors, combining semiconduction, spontaneous polarization, and photoinduced excitation, show great promise to enhance the performance of solar cells, pressure sensors, and photodetectors. Particularly, organic-inorganic lead halide perovskite ferroelectrics have been explored for their prominent carrier transport properties and structural tunability. However, a high concentration of toxic Pb is a stumbling block for their further application. Here, we present a lead-free hybrid perovskite semiconductor, (C4H9NH3)2(NH3CH3)2Sn3Br10 (1), which exhibits a large spontaneous polarization of 11.76 mu Ccm(2) at room temperature. Significantly, 1 presents a spontaneous polar ordering transition, similar to the better-known perovskite ferroelectrics, and exhibits ferroelectric phase transition behaviors. To our best knowledge, 1 is the first example of a Sn-based hybrid perovskite semiconductor featuring ferroelectric performance. Mechanistic studies reveal that such ferroelectricity can be attributable to the synergistic effects of ordering of organic cations and stereochemically active lone-pair electrons inducing distortion of inorganic octahedra. This work provides an effective way to explore "green" ferroelectric semiconductors with potentially enhanced energy conversion efficiency.

Copyright:Team of Polar Molecule-Based Optoelectronic Crystal Materials. Technology Support:Technical support center
Phone:+86-0591-83730955,Mail:jhluo@fjirsm.ac.cn
Address:155 Yangqiao Road West Fuzhou,350002,P.R.China
Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences