柴国良
柴国良
更新日期:2017-03-01  

  柴国良,博士,博士生导师,研究员,课题组长。2007年毕业于华中师范大学化学学院获学士学位。2012年毕业于中国科学院福建物质结构研究所获博士学位。2012-2014在东京工业大学有机高分子专攻从事博士后研究。2014-2016在伦敦大学学院化学系从事博士后研究。2016年作为引进海外高层次人才回到中科院福建物质结构研究所从事科研工作,任研究员、课题组长。近年来发表SCI论文约40篇,其中多篇文章发表在J. Am. Chem. Soc., Energy Environ. Sci., Nature Comm. Chem. Sci., Adv. Funct. Mater, Nano Energy, ACS Catalysis等国际高影响力刊物。课题组主要从事无机功能/催化材料的第一性原理计算和合成。

课题组主要研究方向为:

1)能源材料(光电催化、电池等)和无机功能材料(非线性光学、热电、稀土磁性等)的合成和第一性原理计算。

2)人工智能(机器学习和高通量计算等)在材料开发中的应用。 

  联系电话:0591-63173102        

       电子邮箱: g.chai@ fjirsm.ac.cn 

  办公地点:老区化学楼313 

  课题组主页:http://www.fjirsm.cas.cn/research/R1/cgl/ktzz_133506/     

  近期论文:  

  [1] Yan Li+, Junheng Huang+, Xiang Hu+, Linlin Bi, Pingwei Cai, Jingchun Jia, Guoliang Chai*, Shiqiang Wei*, Liming Dai, and Zhenhai Wen*, Fe Vacancies Induced Surface FeO6 in Nanoarchitectures of N-doped Graphene Protected β-FeOOH: Effective Active Sites for pH-universal Electrocatalytic Oxygen Reduction, 

          Adv. Funct. Mater., 2018, 1803330. 

  [2] Jia Guo, Xiaomei Yan, Qin Liu, Qiang Li, Xiao Xu, Longtian Kang*, Zhanmin Cao*, Guoliang Chai*, Jun Chen, Yaobing Wang, Jiannian Yao, The synthesis and synergistic catalysis of iron phthalocyanine and its graphene-based axial complex for enhanced oxygen reduction,    

    Nano Energy, 2018, 46, 347-355.  

  [3] Tao Zhang, Yang Hou, Volodymyr Dzhagan, Zhongquan Liao, Guoliang Chai, Markus L?ffler, Davide Olianas, Alberto Milani, Shunqi Xu, Matteo Tommasini , Dietrich R.T. Zahn, Zhikun Zheng, Ehrenfried Zschech, Rainer Jordan, Xinliang Feng*, Copper-surface-mediated synthesis of acetylenic carbon-rich nanofibers for active metal-free photocathodes,  

  Nature Comm. 2018, 9, 1140.  

  [4] Guo-Liang Chai*?, Kaipei Qiu, Mo Qiao, Maria-Magdalena Titirici, Congxiao Shang and Zhengxiao Guo*, Active Sites Engineering Leads to Exceptional ORR and OER Bifunctionality in P,N Co-Doped Graphene Frameworks,   

    Energy Environ. Sci., 2017, 10, 1186-1195.  

  [5] Guo-Liang Chai*, Z. Hou, D. J. Shu, T. Ikeda, K. Terakura, Active Sites and Mechanisms for Oxygen Reduction Reaction on Nitrogen-Doped Carbon Alloy Catalysts: Stone–Wales Defect and Curvature Effect,    

    J. Am. Chem. Soc., 2014, 136, 13629.  

  [6] Guo-Liang Chai*, M. Boero, Z. Hou, K. Terakura, and W. D. Cheng, Indirect Four-Electron Oxygen Reduction Reaction on Carbon Materials Catalysts in Acidic Solutions,  

    ACS Catal. 2017, 7, 7908-7916.  

  [7] Guo-Liang Chai and Zhengxiao Guo*, Highly Effective Sites and Selectivity of Nitrogen-Doped Graphene/CNT Catalysts for CO2 Electrochemical Reduction,   

    Chem. Sci., 2016, 7, 1268-1275.  

  [8] Lin Ye, Guoliang Chai*and Zhenhai Wen*, Zn-MOF-74 Derived N-Doped Mesoporous Carbon as pH-Universal Electrocatalyst for Oxygen Reduction Reaction,   

    Adv. Funct. Mater., 2017, 1606190.  

  [9] Kaipei Qiu, Guoliang Chai, Chaoran Jiang, Min Ling, Junwang Tang, and Zhengxiao Guo*, Highly Efficient Oxygen Reduction Catalysts by Rational Synthesis of Nanoconfined Maghemite in a Nitrogen-Doped Graphene Framework,   

    ACS Catalysis, 2016, 6, 3558-3568.  

  [10] Xiang Hu,  Junxiang Chen,  Guang Zeng,  Jingchun Jia,  Pingwei Cai, Guoliang Chai*  and  Zhenhai Wen*, Robust 3D Macroporous Structures with SnS Nanoparticle Decorating Nitrogen-doped Carbon Nanosheet Networks for High-Performance Sodium-Ion Batteries,  

    Journal of Materials Chemistry A, 2017, 5, 23460.  

  [11] Wendan Cheng*, Chensheng Lin, Hao Zhang, and Guoliang Chai*, Theoretical Evaluation on Terahertz Source Generator from Ternary Metal Chalcogenides of PbM6Te10 (M = Ga, In),   

    J. Phys. Chem. C, 2018, 122,4557-4564.  

  [12] Chensheng Lin, Wendan Cheng, Zhengxiao Guo, Guoliang Chai*, and Hao Zhang, Exceptional Thermoelectric Performance of a “Star-Like” SnSe Nanotube with Ultra-Low Thermal Conductivity and a High Power Factor,  

  Physical Chemistry Chemical Physics, 2017, 19, 23247-23253.  

  [13] Huang, Yi-Zhi; Zhang, Hao; Lin, Chen-Sheng; Cheng, Wendan; Guo, Zheng Xiao; Chai, Guo-Liang*, PbGa2GeS6: An Infrared Nonlinear Optical Material Synthesized by A Intermediate-Temperature Self-Fluxing Method,  

      Crystal Growth & Design, 2018, 18, 1162-1167.